求过直线与的交点,且平行于直线的直线方程。
已知函数f(x)=lnx-.(1)当时,判断f(x)在定义域上的单调性;(2)若f(x)在[1,e]上的最小值为,求的值.
求证:..
已知在时有极值0。(1)求常数 的值;(2)求的单调区间。(3)方程在区间[-4,0]上有三个不同的实根时实数的范围。
三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?
已知.(1) 求函数在上的最小值;(2) 对一切,恒成立,求实数a的取值范围;(3) 证明:对一切,都有成立.