(本小题满分14分)等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.
(Ⅰ)求数列的通项公式; (Ⅱ)若数列满足 ,记数列的前n项和为,证明
(本小题满分13分)如图,E为矩形ABCD所在 平面外一点,平面ABE,AE=EB=BC=2,F为 CE是的点,且平面ACE, (1)求证:平面BCE; (2)求三棱锥C—BGF的体积。
(本小题满分14分) 某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了其中50棵树苗的高度(单位:厘米),并把这些高度列成了如下的频数分布表:
(1) 在这批树苗中任取一棵,其高度不低于80厘米的概率是多少? (2)这批树苗的平均高度大约是多少?(计算时用各组的中间值代替各组数据的平均值); (3)为了进一步获得研究资料,若从[40,50)组中移出一棵树苗,从[90,100]组中移出两棵树苗进行试验研究,则[40 ,50)组中的树苗A和[90,100]组中的树苗C同时被移出的概率是多少?
(本小题满分12分) 如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,,. (Ⅰ)若,求的值; (Ⅱ)设函数,求的值域.
(本大题满分14分) 已知数列和满足:,,,其中为实数,为正整数. (Ⅰ)对任意实数,证明:数列不是等比数列; (Ⅱ)证明:当时,数列是等比数列; (Ⅲ)设(为实常数), 为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.
(本大题满分13分)已知数列,设,数列. (1)求证:是等差数列; (2)求数列的前n项和Sn; (3)若一切正整数n恒成立,求实数m的取值范围.