如图,在矩形中,,沿对角线把折起到位置,且在面内的射影恰好落在上(1)求证: ;(2)求与平面所成的角的正弦值.
17. (本小题满分13分) 某工厂在试验阶段大量生产一种零件.这种零件有、两项技术指标需要检测,设各项技术指标达标与否互不影响.若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品. (1)求一个零件经过检测为合格品的概率是多少? (2)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少?
16. (本小题满分13分) 设集合,若,求实数a的取值范围.
21.(本小题满分13分) 设是函数的两个极值点,且. (1)求证:; (2)求的取值范围; (3)若函数,当且时,求证:.
20.(本小题满分13分) 已知数列{an}有a1 = a,a2 = p(常数p > 0),对任意的正整数n,,且. (1)求a的值; (2)试确定数列{an}是否是等差数列,若是,求出其通项公式;若不是,说明理由; (3)对于数列{bn},假如存在一个常数b,使得对任意的正整数n都有bn< b,且,则称b为数列{bn}的“上渐近值”,令,求数列的“上渐近值”.
(本小题满分14分)一束光线通过点M(-3,3)射到x轴上,然后反射到圆C上,其中圆C满足以下条件:过点A(1,2)和点B(2,3)且圆心在直线上。 (1)求圆C的方程; (2)求通过圆C圆心的反射光线所在直线的方程; (3)若反射光线所在直线与圆C相切,求入射光线所在直线的方程