(本小题满分10分)一名学生在军训中练习射击项目,他射击一次,命中目标的概率是,若连续射击6次,且各次射击是否命中目标相互之间没有影响.(1)求这名学生在第3次射击时,首次命中目标的概率;(2)求这名学生在射击过程中,恰好命中目标3次的概率.
如图,已知是椭圆的右焦点;圆与轴交于两点,其中是椭圆的左焦点. (1)求椭圆的离心率; (2)设圆与轴的正半轴的交点为,点是点关于轴的对称点,试判断直线与圆的位置关系; (3)设直线与圆交于另一点,若的面积为,求椭圆的标准方程.
如图,已知、、为不在同一直线上的三点,且,. (1)求证:平面//平面; (2)若平面,且,,,求证:平面; (3)在(2)的条件下,求二面角的余弦值.
在中,角、、所对应的边为、、. (1)若,求的值; (2)若,且的面积,求的值.
根据空气质量指数(为整数)的不同,可将空气质量分级如下表:
某市年月日—月日,对空气质量指数进行监测,获得数据后得到如图的条形图 (1)估计该城市本月(按天计)空气质量类别为中度污染的概率; (2)在上述个监测数据中任取个,设为空气质量类别颜色为紫色的天数,求的分布列.
设数列是公比为正数的等比数列,,. (1)求数列的通项公式; (2)若数列满足:,求数列的前项和.