(本小题满分14分)一块边长为10的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积与的函数关系式,并求出函数的定义域.
已知函数.(1)设函数求的极值.(2)证明:在上为增函数。
如图,在四棱锥中,底面是边长为2的正方形,侧面底面,且为等腰直角三角形,,、分别为、的中点.(1)求证://平面 ;(2)若线段中点为,求二面角的余弦值.
已知抛物线的顶在坐标原点,焦点到直线的距离是(1)求抛物线的方程;(2)若直线与抛物线交于两点,设线段的中垂线与轴交于点 ,求的取值范围.
数列的前项和为,且是和的等差中项,等差数列满足 (1)求数列、的通项公式(2)设=,求数列的前项和.
已知向量向量记(1)求函数的单调递增区间;(2)若,求函数的值域.