(本题12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;对角线相交于O点,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转。(1)当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明。(2)在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。(3)当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=时,求PE及DH的长。
(8分) 如图,用树状图或列表法求出下面两个转盘配成紫色的概率.(红色+蓝色=紫色)
(8分) 现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.图(1) 图(2) 图(3) 图(4)观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征
(12分)某公司在A、B两地分别有库存机器16台和12台,现要运往甲、乙两地,其中甲地15台,已地13台,从A地运一台到甲地的运费为500元,到乙地的运费为400元,从B地运一台到甲地的运300元,到乙地为600元,公司应怎样设计调运方案,能使这些机器的总运费最省?最省运费是多少?(设从A运到甲地的机器为X台,总运费为Y元)。
(8分)已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.
(8分)如右图,AC与BD交于O点,有如下三个关系式①OA=OC,②OB=OD,③AB∥CD。(1)请用其中两个关系式作为条件,另一个关系式作为结论,写出一个真命题。已知:_________________,求证:_____(填序号,就可以)(2)证明(1)中你写出的真命题。