如图,一艘船在A处测得北偏东60°的方向上有一个小岛C,当它以每小时40海里的速度向正东方向航行了30分钟到达B处后,测得小岛C在其北偏东15°的方向上,求此时船与小岛之间的距离BC.(,结果保留整数)
如图所示,已知抛物线y=ax2+bx﹣3经过A(﹣1,0),B(4,5)两点,过点B作BC⊥x轴,垂足为C.
(1)求抛物线的解析式;
(2)求tan∠ABO的值;
(3)点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果以M,N,B,C为顶点的四边形是平行四边形,求出点M的横坐标.
如图,在△ABC中,∠C=90°,D、F是AB边上两点,以DF为直径的⊙O与BC相交于点E,连接EF,∠OFE= 1 2 ∠A.过点F作FG⊥BC于点G,交⊙O于点H,连接EH.
(1)求证:BC是⊙O的切线;
(2)连接ED,过点E作EQ⊥AB,垂足为Q,△EQD和△EGH全等吗?若全等,请予以证明;若不全等,请说明理由;
(3)当BO=5,BE=4时,求△EHG的面积.
如图,反比例函数y= k 1 x 与一次函数y=k2x+b的图象交于A(2,4),B(﹣4,m)两点.
(1)求k1,k2,b的值;
(2)求△AOB的面积;
(3)若M(x1,y1),N(x2,y2)是反比例函数y= k 1 x 的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.
如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.
(1)求证:四边形EFGH是菱形;
(2)若EF=4,∠HEF=60°,求EG的长.
某学校为了了解学生对新开设的四种社团活动(A:编织,B:厨艺,C:泥塑,D:劳技)的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在这四种活动中选择一项)将数据进行整理并绘制成以下两幅统计图(未画完整).
(1)这次调查中,一共调查了多少名学生?
(2)求出扇形统计图中“D“所对扇形的圆心角的度数,并补全两幅统计图;
(3)若全校有1600名学生,请估计喜欢B:厨艺的学生有多少名?