(本小题满分14分)椭圆过点P,且离心率为,F为椭圆的右焦点,、两点在椭圆上,且 ,定点(-4,0).(Ⅰ)求椭圆C的方程; (Ⅱ)当时 ,问:MN与AF是否垂直;并证明你的结论.(Ⅲ)当、两点在上运动,且 =6时, 求直线MN的方程.
如图,菱形的边长为4,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.(1)求证:平面;(2)求证:平面平面;(3)求二面角的余弦值.
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
已知这50位顾客中一次购物量少于10件的顾客占80%.(1)确定与的值;(2)若将频率视为概率,求顾客一次购物的结算时间的分布列与数学期望;(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.
已知函数,的最大值是1,最小正周期是,其图像经过点.(1)求的解析式;(2)设、、为△ABC的三个内角,且,,求的值.
已知数列是各项均不为0的等差数列,公差为,为其前n项和,且满足,.数列满足,, 为数列的前项和.(1)求数列的通项公式;(2)若对任意的,不等式恒成立,求实数的取值范围;(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
已知函数(,,且)的图象在处的切线与轴平行.(1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.