因式分解(每小题6分,共18分):26. (1) (2) 27. (3)
(本小题满分6分) 常用的确定物体位置的方法有两种. 如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点. 请你用两种不同方法表述点B相对点A的位置.
(本小题满分8分) 统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布 直方图(部分未完成):
上海世博会前20天日参观人数的频数分布直方图
上海世博会前20天日参观人数的频数分布表
已知抛物线交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D. (1)求b、c的值并写出抛物线的对称轴;(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.求证:四边形ODBE是等腰梯形;(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的?若存在,求点Q的坐标;若不存在,请说明理由.
某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?
如图,AB是⊙O的直径, P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连结CD交AB于点E.求证:(1)PD=PE;(2).