已知函数,且定义域为(0,2).(1)求关于x的方程+3在(0,2)上的解;(2)若是定义域(0,2)上的单调函数,求实数的取值范围;(3)若关于x的方程在(0,2)上有两个不同的解,求k的取值范围。
已知椭圆过点,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)为椭圆的左、右顶点,直线与轴交于点,点是椭圆上异于的动点,直线分别交直线于两点.证明:恒为定值.
如图,四棱锥的底面是矩形,,且侧面是正三角形,平面平面,(Ⅰ)求证:;(Ⅱ)在棱上是否存在一点,使得二面角的大小为45°.若存在,试求的值,若不存在,请说明理由.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为,且不同种产品是否受欢迎相互独立.记为公司向市场投放三种新型产品受欢迎的数量,其分布列为
(Ⅰ)求的值(Ⅱ)求数学期望.
已知△ABC的三个内角A、B、C所对的边分别为向量,且.(Ⅰ)求角A的大小;(Ⅱ)若,试判断取得最大值时△ABC形状.
(本小题满分14分)已知椭圆的离心率为,点, 为上两点,斜率为的直线与椭圆交于点,(,在直线两侧).(I)求四边形面积的最大值;(II)设直线,的斜率为,试判断是否为定值.若是,求出这个定值;若不是,说明理由.