21.(本小题满分14分)已知直线过抛物线的焦点且与抛物线相交于两点,自向准线作垂线,垂足分别为 .(1)求抛物线的方程;(2)证明:无论取何实数时,,都是定值;(3)记的面积分别为,试判断是否成立,并证明你的结论.
设随机变量X的分布列为P(X=i)=,(i=1,2,3,4). (1)求P(X<3); (2)求P; (3)求函数F(x)=P(X<x).
袋中有5只乒乓球,编号为1至5,从袋中任取3只,若以X表示取到的球中的最大号码,试写出X的概率分布.
函数. (1)令,求的解析式; (2)若在上恒成立,求实数的取值范围.
椭圆以双曲线的实轴为短轴、虚轴为长轴,且与抛物线交于两点. (1)求椭圆的方程及线段的长; (2)在与图像的公共区域内,是否存在一点,使得的弦与的弦相互垂直平分于点?若存在,求点坐标,若不存在,说明理由.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为. (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求和不全被选中的概率. 下面的临界值表供参考:
(参考公式:)