已知集合,(1)若,求实数的值;(2)设全集为R,若,求实数的取值范围。
(本小题满分14分)已知数列中,,, 为该数列的前项和,且.(1)求数列的通项公式;(2)若不等式对一切正整数都成立,求正整数的最大值,并证明结论.
(本小题共14分)如图,四棱锥中,底面为平行四边形,,,⊥底面.(1)证明:平面平面; (2)若二面角为,求与平面所成角的正弦值。
(本小题满分12分)一个口袋内有()个大小相同的球,其中有3个红球和个白球.已知从口袋中随机取出一个球是红球的概率是. (1)当时,不放回地从口袋中随机取出3个球,求取到白球的个数的期望;(2)若,有放回地从口袋中连续地取四次球(每次只取一个球),在四次摸球中恰好取到两次红球的概率大于,求和.
(本小题满分12分)在中,角的对边分别为,是该三角形的面积, (1)若,,,求角的度数;(2)若,,,求的值.
(本小题满分14分)已知函数(Ⅰ)当时,解不等式>;(Ⅱ)讨论函数的奇偶性,并说明理由.