(本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间(1)求走出迷宫时恰好用了l小时的概率(2)求ξ的分布列和数学期望
如图,在四棱锥P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=BC. 点E、F分别是棱PB、边CD的中点. (1)求证:AB⊥面PAD; (2)求证:EF∥面PAD.
如图,摩天轮的半径为50 m,点O距地面的高度为60 m,摩天轮做匀速转动,每3 min转一圈,摩天轮上点P的起始位置在最低点处. (1)试确定在时刻t(min)时点P距离地面的高度; (2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85 m?
已知函数. (1)求的单调区间; (2)设,若对任意,均存在,使得<,求的取值范围.
已知过点的动直线与抛物线:相交于两点.当直线的斜率是时,. (1)求抛物线的方程; (2)设线段的中垂线在轴上的截距为,求的取值范围.
如图,在四棱锥中,底面是矩形,⊥平面,,,分别是的中点. (1)证明:⊥平面; (2)求平面与平面夹角的大小.