(本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间(1)求走出迷宫时恰好用了l小时的概率(2)求ξ的分布列和数学期望
设平面向量,若存在实数和角,其中,使向量,且. (1).求的关系式; (2).若,求的最小值,并求出此时的值.
观察下列三角形数表 1 -----------第一行 2 2 -----------第二行 3 4 3 -----------第三行 4 7 7 4 -----------第四行 5 11 14 11 5 …… … … …… … …… 假设第行的第二个数为, (Ⅰ)依次写出第六行的所有个数字; (Ⅱ)归纳出的关系式并求出的通项公式; (Ⅲ)设求证:…
如图,在组合体中,是一个长方体,是一个四棱锥.,,点且. (Ⅰ)证明:; (Ⅱ)若,当为何值时,.
已知函数f(x)= +lnx的图像在点P(m,f(m))处的切线方程为y="x" , 设. (1)求证:当恒成立; (2)试讨论关于的方程:根的个数.
已知数列{a}中,a=2,前n项和为S,且S=. (1)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式 (2)设bn=,数列{bn}的前n项和为Tn,求使不等式Tn> 对一切n∈N*都成立的最大正整数k的值