某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
在三角形中,角、、的对边分别为、、,且三角形的面积为. (1)求角的大小 (2)若,求的值.
已知递增等比数列的前n项和为,,且. (1)求数列的通项公式; (2)若数列满足,且的前项和. 求证:
已知函数. (1)用定义证明是偶函数; (2)用定义证明在上是减函数; (3)作出函数的图像,并写出函数当时的最大值与最小值.
已知函数是定义在上的奇函数,当时,. 求出函数的解析式.
设全集,,