已知,记点P的轨迹为E. (1)求轨迹E的方程; (2)设直线l过点F2且与轨迹E交于P、Q两点,若无论直线l绕点F2怎样转动,在x轴上总存在定点,使恒成立,求实数m的值.
.已知A、B、C的坐标分别为A(4,0),B(0,4),C(3cosα,3sinα).(Ⅰ)若α∈(-π,0),且||=||,求角α的大小;(Ⅱ)若⊥,求的值.
在△ABC中,A、B、C所对边的长分别为a、b、c,已知向量=(1,2sinA),=(sinA,1+cosA),满足∥,b+c=a.(Ⅰ)求A的大小;(Ⅱ)求sin(B+)的值.
已知向量=(sinA,cosA),=(,-1),·=1,且为锐角.(Ⅰ)求角A的大小;(Ⅱ)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.
已知=(sinθ,),=(1,),其中θ∈(π,),则一定有( )
如图,是某市1000户居民月平均用电量的频率分布直方图,(1)如果当地政府希望以上的居民每月的用电量不超出标准,这个标准为多少时比较适当?(2)计算这1000户居民月用电量的平均值(同一组中的数据用该组区间的中点值作代表);(3)有关部门为了制定居民月用电量标准,采用分层抽样的方法从1000户居民中抽取50户参加听证会,并且要在这已经确定的50人中随机确定两人做中心发言,求这两人分别来自用电量区间 和 的概率.