方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF切半圆于点E,交AB的延长线于点F,BF=4.求:(1). cos∠F的值;(2). BE的长.
下面的两个网格中,每个小正方形的边长均为.请你分别在每个网格中画出一个顶点在格点上,且周长为的形状和大小不同的凸多边形.
计算:.
将直尺与三角尺按如图所示的方式叠放在一起.在图中标记的角中,写出所有与互余的角.
如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.⑴ 求点C的坐标;⑵ 连结BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB2=BP·BE,能否推出AP⊥BE?请给出你的结论,并说明理由; ⑶ 在直线BE上是否存在点Q,使得AQ2=BQ·EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.
我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为: ……①(其中、、为三角形的三边长,为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式: ……②(其中).⑴ 若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②,计算该三角形的面积;⑵ 你能否由公式①推导出公式②?请试试.