在一堂数学课中,数学老师给出了如下问题“已知:如图①,在四边形ABCD中,AB=AD,∠B=∠D.求证:CB=CD”.文文和彬彬都想到了利用辅助线把四边形的问题转化为三角形来解决.
(1)文文同学证明过程如下:连结AC(如图②)∵∠B=∠D ,AB=AD,AC=AC∴△ABC≌△ADC,∴CB=CD你认为文文的证法是 的.(在横线上填写“正确”或“错误”)彬彬同学的辅助线作法是“连结BD”(如图③),请完成彬彬同学的证明过程.
如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2. (1)求证:BE=DF; (2)求证:AF∥CE.
已知x=2是关于x的一元二次方程x2+3x+m-2=0的一个根. (1)求m的值及方程的另一个根; (2)若7-x≥1+m(x-3),求x的取值范围.
已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业: 甲:①连接OP,作OP的垂直平分线l,交OP于点A; ②以点A为圆心、OA为半径画弧、交⊙O于点M; ③作直线PM,则直线PM即为所求(如图1). 乙:①让直角三角板的一条直角边始终经过点P; ②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M; ③作直线PM,则直线PM即为所求(如图2). 对于两人的作业,下列说法正确的是()
如图,在矩形ABCD中,AD=8,AB=6,点M是BC的中点,点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动,在点P,Q的运动过程中,以PQ为边作正方形PQEF,使它与矩形ABCD在BC的同侧,点P,Q同时出发,当点P返回点M时停止运动,点Q也随之停止,设点P,Q运动的时间是t秒(t>0) (1)用含t的代数式表示线段BQ的长; (2)设正方形PQEF与矩形ABCD重叠部分的面积为S,求S与t之间的函数关系式; (3)连接AC,当正方形PQEF与△ADC重叠部分为三角形时,直接写出t的取值范围.
某企业生产的一批产品上市后30天内全部售完,调查发现,国内市场的日销售量为y1(吨)与时间t(t为整数,单位:天)的关系如图1所示的抛物线的一部分,而国外市场的日销售量y2(吨)与时间t,t为整数,单位:天)的关系如图2所示. (1)求y1与时间t的函数关系式及自变量t的取值范围,并写出y2与t的函数关系式及自变量t的取值范围; (2)设国内、国外市场的日销售总量为y吨,直接写出y与时间t的函数关系式,当销售第几天时,国内、外市场的日销售总量最早达到75吨? (3)判断上市第几天国内、国外市场的日销售总量y最大,并求出此时的最大值.