解方程组(1) (2) (3) (4)
为响应市教育局倡导的“阳光体育运动”的号召,全校学生积极参与体育运动.为了进一步了解学校九年级学生的身体素质情况,体育老师在九年级800名学生中随机抽取50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下所示:请结合图表完成下列问题:(1)表中的 ;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第 组;(4) 若九年级学生一分钟跳绳次数()达标要求是:为不合格; 为合格;为良;为优.根据以上信息,请你估算学校九年级同学一分钟跳绳次数为优的人数为 .
解不等式组并写出它的所有整数解.
计算:(1) (2)先化简,再求值:,其中
如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为1,,2 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以 (长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.请解答下列问题:过A,B两点的直线解析式是 ▲ 当t﹦4时,点P的坐标为 ▲ ;当t ﹦ ▲ ,点P与点E重合;① 作点P关于直线EF的对称点P′. 在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?② 当t﹦2时,是否存在着点Q,使得△FEQ ∽△BEP ?若存在, 求出点Q的坐标;若不存在,请说明理由.
一辆客车从甲地开往甲地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:根据图象,直接写出y1,y2关于x的函数关系式分别求出当x=3,x=5,x=8时,两车之间的距离。若设两车间的距离为S(km),请写出S关于x的函数关系式甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油。求出A加油站到甲地的距离。