(本题12分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:,,,因此,,这三个数都是神秘数.(1)和这两个数是神秘数吗?为什么?(2)设两个连续偶数为和(其中取非负整数),由这两个连续偶数构造的神秘数是的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?
如图,△ABC中,∠ACB=90度,AC=7,BC=24,CD⊥AB于D。 (1)求AB的长; (2)求CD的长。
如图,△ACB和△ECD都是等腰直角三角形,ACB=ECD=90°.D为AB边上一点. 求证:(1)△ACE△BCD; (2)AD+DB=DE.
先化简代数式,然后选取一个使原式有意义的的值代入求值.
解方程:
计算 :(1)(—)·÷(+) (2) (3)