如图,抛物线()与轴相交于两点,点是抛物线的顶点,以为直径作圆交轴于两点,. (1). 用含的代数式表示圆的半径的长;)(2). 连结,求线段的长;(3). 点是抛物线对称轴正半轴上的一点,且满足以点为圆心的圆与直线和圆 都相切,求点的坐标.)
如图1,平面直角坐标系中,抛物线与轴交于A、B两点,点C是AB的中点,CD⊥AB且CD=AB.直线BE与轴平行,点F是射线BE上的一个动点,连接AD、AF、DF. (1)若点F的坐标为(,),AF=. ①求此抛物线的解析式; ②点P是此抛物线上一个动点,点Q在此抛物线的对称轴上,以点A、F、P、Q为顶点构成的四边形是平行四边形,请直接写出点Q的坐标; (2)若,,且AB的长为,其中.如图2,当∠DAF=45时,求的值和∠DFA的正切值.
以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=30. 图1 图2 图3 (1)点E、F、M分别是AC、CD、DB的中点,连接FM、EM. ①如图1,当点D、C分别在AO、BO的延长线上时,=_______; ②如图2,将图1中的△AOB绕点O沿顺时针方向旋转角(),其他条件不变,判断的值是否发生变化,并对你的结论进行证明; (2)如图3,若BO=,点N在线段OD上,且NO=2.点P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.
已知抛物线经过点(,). (1)求的值; (2)若此抛物线的顶点为(,),用含的式子分别表示和,并求与之间的函数关系式; (3)若一次函数,且对于任意的实数,都有≥,直接写出的取值范围.
阅读下面的材料: 小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数的最大值.他画图研究后发现,和时的函数值相等,于是他认为需要对进行分类讨论. 他的解答过程如下: ∵二次函数的对称轴为直线, ∴由对称性可知,和时的函数值相等. ∴若1≤m<5,则时,的最大值为2; 若m≥5,则时,的最大值为. 请你参考小明的思路,解答下列问题: (1)当≤x≤4时,二次函数的最大值为_______; (2)若p≤x≤2,求二次函数的最大值; (3)若t≤x≤t+2时,二次函数的最大值为31,则的值为_______.
平面直角坐标系中,原点O是正三角形ABC外接圆的圆心,点A在轴的正半轴上,△ABC的边长为6.以原点O为旋转中心将△ABC沿逆时针方向旋转角,得到△,点、、分别为点A、B、C的对应点. (1)当=60时, ①请在图1中画出△; ②若AB分别与、交于点D、E,则DE的长为_______; (2)如图2,当⊥AB时,分别与AB、BC交于点F、G,则点的坐标为 _____,△FBG的周长为_____,△ABC与△重叠部分的面积为_______.