(本小题满分10分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足两个关系:①C(x)=②若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式; (Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
已知火箭的起飞重量M是箭体(包括搭载的飞行器)的重量m和燃料重量x之和.在不考虑空气阻力的条件下,假设火箭的最大速度y关于x的函数关系式为:当燃料重量为吨(e为自然对数的底数,)时,该火箭的最大速度为4(km/s).(Ⅰ)求火箭的最大速度与燃料重量x吨之间的函数关系式;(Ⅱ)已知该火箭的起飞重量是544吨,是应装载多少吨燃料,才能使该火箭的最大飞行速度达到8km/s,顺利地把飞船发送到预定的轨道?
已知函数(Ⅰ)求函数的最大值;(Ⅱ)当时,求证:.
用一枚质地均匀的硬币,甲、乙两人做抛掷硬币游戏,甲抛掷4次,记正面朝上的次为;乙抛掷3次,记正面朝上的次为.(Ⅰ)分别求和的期望;(Ⅱ)规定:若>,则甲获胜;否则,乙获胜.求甲获胜的概率.
已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)若函数在[-,]上的最大值与最小值之和为,求实数的值.
袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求: (1)3个全是红球的概率. (2)3个颜色全相同的概率. (3)3个颜色不全相同的概率. (4)3个颜色全不相同的概率.