(理科)已知函数=x2-4x+a+3,g(x)=mx+5-2m.(Ⅰ)若y=f(x)在[-1,1]上存在零点,求实数a的取值范围;(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围;(Ⅲ)若函数y=f(x)(x∈[t,4])的值域为区间D,是否存在常数t,使区间D的长度为7-2t?若存在,求出t的值;若不存在,请说明理由(注:区间[p,q]的长度为q-p).
已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程;(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.
如图,在四棱锥A—BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,D为CC1的中点.(1)求证:BD⊥AB1;(2)求二面角B—AD—B1的余弦值.
已知数列{an}中,a1=2,an=2-(n≥2,n∈N*).(1)设bn=,n∈N*,求证:数列{bn}是等差数列;(2)设cn=(n∈N*),求数列{cn}的前n项和Sn.
假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为,记此时教室里敞开的窗户个数为X.(1)求X的分布及数学期望;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.
已知函数f(x)=sin 2x-cos2x-,x∈R.(1)求函数f(x)的最小值和最小正周期;(2)设△ABC的内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,若sin B=2sin A,求a,b的值.