(本小题满分14分)已知直线相交于A、B两点。(1)若椭圆的离心率为,焦距为2,求椭圆的标准方程;(2)若(其中O为坐标原点),当椭圆的离率时,求椭圆的长轴长的最大值。
如图,在矩形中,,沿对角线把折起到位置,且在面内的射影恰好落在上 (1)求证: ; (2)求与平面所成的角的正弦值.
已知关于的方程. (1)若方程表示圆,求实数的取值范围 ; (2)若圆与直线相交于两点,且,求的值
已知x=1是的一个极值点, (1)求的值; (2)求的单调递减区间 (3)设试问过点(2,5)可作多少条直线与曲线相切?请说明理由.
已知椭圆,抛物线,点是上的动点,过 点作抛物线的切线,交椭圆于两点, (1)当的斜率是时,求; (2)设抛物线的切线方程为,当是锐角时,求的取值范围.
如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,,, 又. (Ⅰ)求证:平面; (Ⅱ)求点B到平面PAD的距离.