已知二次函数的图象与轴交于点(,0)、点,与轴交于点.(1)求点坐标;(2)点从点出发以每秒1个单位的速度沿线段向点运动,到达点后停止运动,过点作交于点,将四边形沿翻折,得到四边形,设点的运动时间为.①当为何值时,点恰好落在二次函数图象的对称轴上;②设四边形落在第一象限内的图形面积为,求关于的函数关系式,并求出的最大值.
(11·大连)(本题12分)如图7,某建筑物BC上有一旗杆AB,小明在与BC 相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的 观测点与地面的距离EF为1.6m. ⑴求建筑物BC的高度; ⑵求旗杆AB的高度. (结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)
(11·大连)(本题9分)如图6,等腰梯形ABCD中,AD∥BC,M是BC的中点,求证:∠DAM=∠ADM.
(11·天水)在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°, OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边 长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向 左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止. (1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函 数关系式. (2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是 否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值; 若不存在,请说明理由.