(11分)如图,抛物线经过的三个点,已知轴,点在轴上,点在轴上,且.(1)求抛物线的对称轴;(2)写出三点的坐标并求抛物线的解析式;(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形?若存在,请在图中画出所有符合条件的P点,然后直接写出点的坐标;若不存在,请说明理由.
计算: (1) (2)(3) (4)
已知反比例函数图象过第二象限内的点A(-2,m)AB⊥x轴于B, Rt△AOB面积为3, 若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,—),(1)反比例函数的解析式为 ,m= ,n= ;(2)求直线y=ax+b的解析式;(3)在y轴上是否存在一点P,使△PAO为等腰三角形,若存在,请直接写出P点坐标,若不存在,说明理由。
列方程解应用题: 某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由。
已知:与成正比例,且时,。(1)试求与之间的函数关系式;(2)当时,求的值;(3)当取何值时, ?;
已知:如图,四边形ABCD,AB=8,BC=6,CD=26,AD=24,且AB⊥BC。求:四边形ABCD的面积。