给出下列命题:命题1.点(1,1)是双曲线与抛物线y=x2的一个交点.命题2.点(1,2)是双曲线与抛物线y=2x2的一个交点.命题3.点(1,3)是双曲线与抛物线y=3x2的一个交点.…请你观察上面的命题,猜想出命题n(n是正整数): 点(1,n)是双曲线与抛物线y=nx2的一个交点 .
如图是2002年8月在北京召开的第24届国际数学家大会的会标,它是由4个相同的直角三角形拼和而成.若图中大小正方形的面积分别为52和4,则直角三角形的两条直角边的和是 .
在△ABC中,∠A=90°,AB=AC,BD平分∠B交AC于D,DE⊥BC于E,若BC=10,则△DEC的周长是 .
一轮船以每小时20海里的速度沿正东方向航行.上午8时,该船在A处测得某灯塔位于它的北偏东30°的B处(如图),上午9时行到C处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里(结果保留根号).
补全“求作∠AOB的平分线”的作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以D、E为圆心,以 为半径画弧,两弧在∠AOB内交于点C.③作射线OC即为∠AOB的平分线.
用反证法证明 “三角形中至少有一个角不小于60°时,假设“ ”,则与“ ”矛盾,所以原命题正确.