(本题满分10分第(1)小题满分8分,第(2)小题满分2分) A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间 x(小时)之间的函数图像.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.
如图,C、F在BE上,∠A=∠D,AB∥DE,BF=EC. 求证:AB=DE.
如图,∠ABC=∠BCD,∠1=∠2,请问图中有几对平行线?并说明理由.
如图,在平面直角坐标系xOy中,⊙C的圆心坐标为(-2,-2),半径为.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为直线AB上一动点. (1)若△POA是等腰三角形,且点P不与点A、B重合,直接写出点P的坐标; (2)当直线PO与⊙C相切时,求∠POA的度数; (3)当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系式,并写出t的取值范围.
在中,∠ACB=90°,AC>BC,D是AC边上的动点,E是BC边上的动点,AD=BC,CD="BE" . (1) 如图1,若点E与点C重合,连结BD,请写出∠BDE的度数; (2)若点E与点B、C不重合,连结AE 、BD交于点F,请在图2中补全图形,并求出∠BFE的度数.
二次函数的图象如图所示,其顶点坐标为M(1,-4). (1)求二次函数的解析式; (2)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线与这个新图象有两个公共点时,求的取值范围.