(本小题满分12分)在中,.(Ⅰ)求角;(Ⅱ)设的面积为,且,求边的长.
如图,在四棱锥PABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD= AD.若E、F分别为PC、BD的中点,求证:(1)EF∥平面PAD;(2)EF⊥平面PDC.
在空间四边形ABCD中,已知AC⊥BD,AD⊥BC,求证:AB⊥CD.
如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A、B为直角顶点的等腰直角三角形,AB=1.现给出三个条件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:PA⊥平面ABC;
如图,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点. (1)求证:MN∥平面AA1C1C;(2)若AC=AA1,求证:MN⊥平面A1BC.
如图,在锥体PABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E、F分别是BC、PC的中点.证明:AD⊥平面DEF.