甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从道备选题中一次性抽取道题独立作答,然后由乙回答剩余题,每人答对其中题就停止答题,即闯关成功.已知在道备选题中,甲能答对其中的道题,乙答对每道题的概率都是.(Ⅰ)求甲、乙至少有一人闯关成功的概率;(Ⅱ)设甲答对题目的个数为ξ,求ξ的分布列及数学期望.
设数列{an}前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.(1)求a1的值.(2)求数列{an}的通项公式.
已知数列{an}满足前n项和Sn=n2+1,数列{bn}满足bn=,且前n项和为Tn,设cn=T2n+1-Tn.(1)求数列{bn}的通项公式.(2)判断数列{cn}的增减性.
已知数列{an}的前n项和为Sn,若S1=1,S2=2,且Sn+1-3Sn+2Sn-1=0(n∈N*且n≥2),求该数列的通项公式.
已知二次函数f(x)=px2+qx(p≠0),其导函数为f'(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.(1)求数列{an}的通项公式.(2)若cn=(an+2),2b1+22b2+23b3+…+2nbn=cn,求数列{bn}的通项公式.
若虚数z同时满足下列两个条件:①z+是实数;②z+3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z;若不存在,请说明理由.