已知椭圆的离心率为,过右焦点F的直线与相交于、两点,当的斜率为1时,坐标原点到的距离为(I)求,的值;(II)上是否存在点P,使得当绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与的方程;若不存在,说明理由。
已知正数成等差数列,且公差,用反证法求证:不可能是等差数列。
已知,且,用分析法求证:.
观察以下各等式:, 分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性利用综合法作出证明.
设x=1和x=2是函数f(x)=x5+ax3+bx+1的两个极值点. (1)求a和b的值; (2)求f(x)的单调区间.
椭圆的两个焦点分别为,离心率。 (1)求椭圆方程; (2)一条不与坐标轴平行的直线与椭圆交于不同的两点,且线段中点的横坐标为,求直线倾斜角的取值范围。