已知函数.(Ⅰ) 求函数的最小值和最小正周期;(Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.
某商场销售某种商品的经验表明,该商品每日的销售量 (单位:千克)与销售价格 (单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1) 求的值;(2) 若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.(利润=销售额-成本)
已知点A 和B ,动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与经过点(2,0)且倾斜角为的直线交于D、E两点(1)求点C的轨迹方程;(2)求线段DE的长
设椭圆C: 过点(0,4),(5,0).(1)求C的方程;(2)求过点(3,0)且斜率为的直线被椭圆C所截线段的中点坐标
甲、乙两射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:(1)人都射中目标的概率;(2)人中恰有人射中目标的概率;(3)人至少有人射中目标的概率
设函数,其中.(Ⅰ)当时,判断函数在定义域上的单调性;(Ⅱ)求函数的极值点;(Ⅲ)证明对任意的正整数,不等式都成立.