已知两点及,点在以、为焦点的椭圆上,且、、构成等差数列.(Ⅰ)求椭圆的方程;(Ⅱ)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,. 求四边形面积的最大值.
、选修4-5:不等式选讲 设函数。(1)求不等式的解集;(2)求函数的最小值
选修4-4:极坐标与参数方程 已知直线的极坐标方程为,圆的参数方程为(其中为参数) (1)将直线的极坐标方程化为直角坐标方程;(2)求圆上的点到直线的距离的最小值
选修4-1:几何证明选讲 如图内接于圆,,直线切圆于点,弦相交于点。(1)求证≌;(2)若
(本小题满分12分) 已知函数,函数是区间[-1,1]上的减函数. (I)求的最大值; (II)若上恒成立,求t的取值范围; (Ⅲ)讨论关于x的方程的根的个数.
(本小题满分12分) 设、分别是椭圆的左、右焦点. (Ⅰ)若是该椭圆上的一个动点,求·的最大值和最小值; (Ⅱ)设过定点的直线与椭圆交于不同的两点、,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.