(本小题满分12分)已知函数,函数是区间[-1,1]上的减函数.(I)求的最大值;(II)若上恒成立,求t的取值范围;(Ⅲ)讨论关于x的方程的根的个数.
(本小题满分12分)如图,平面平面ABCD,ABCD为正方形,是直角三角形,且,E、F、G分别是线段PA,PD,CD的中点.(1)求证:∥面EFC;(2)求异面直线EG与BD所成的角;(3)在线段CD上是否存在一点Q,使得点A到面EFQ的距离为0.8. 若存在,求出CQ的值;若不存在,请说明理由.
(本小题满分12分)甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:若将频率视为概率,回答下列问题.(Ⅰ)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率; (Ⅱ)若甲、乙两运动员各自射击1次,ξ表示这2次射击中击中9环以上(含9环)的次数,求ξ的分布列及Eξ.
((本小题满分12分)已知数列,设,数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和为,求.
已知,则的值等于
(本小题满分14分)若椭圆过点,离心率为,⊙O的圆心在原点,直径为椭圆的短轴,⊙M的方程为,过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B. (1) 求椭圆的方程;(2)若直线PA与⊙M的另一交点为Q,当弦PQ最大时,求直线PA的方程。