(本小题满分14分)若椭圆过点,离心率为,⊙O的圆心在原点,直径为椭圆的短轴,⊙M的方程为,过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B. (1) 求椭圆的方程;(2)若直线PA与⊙M的另一交点为Q,当弦PQ最大时,求直线PA的方程。
己知集合,,,若“”是“”的充分不必要条件,求的取值范围.
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和个黑球(为正整数).现从甲、乙两个盒内各任取2个球,若取出的4个球均为黑球的概率为,求 (1)的值; (2)取出的4个球中黑球个数大于红球个数的概率.
已知为单调递增的等比数列,且,,是首项为2,公差为的等差数列,其前项和为. (1)求数列的通项公式; (2)当且仅当,,成立,求的取值范围.
在中,角所对的边分别为,且. (1)求的大小; (2)若是锐角三角形,且,求周长的取值范围.
在数列中,(为常数,)且成公比不等于1的等比数列. (1)求的值; (2)设,求数列的前项和.