(本小题满分14分)在平面直角坐标系中,设点,直线:,点在直线上移动,是线段与轴的交点, .(I)求动点的轨迹的方程;(II)设圆过,且圆心在曲线上, 设圆过,且圆心在曲线 上,是圆在轴上截得的弦,当运动时弦长是否为定值?请说明理由.
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值. (1)求a、b、c的值; (2)求y=f(x)在[-3,1]上的最大值和最小值.
已知函数f(x)=x3-x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点. (1)若存在x<0,使得f′(x)=-9,求a的最大值; (2)当a>0时,求函数f(x)的极值.
已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数,又f′=. (1)求f(x)的解析式; (2)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围
已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直. (1)求a的值和切线l的方程; (2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围
已知圆M的方程为:x2+y2-2x-2y-6=0,以坐标原点为圆心的圆N与圆M相切. (1)求圆N的方程; (2)圆N与x轴交于E、F两点,圆内的动点D使得|DE|、|DO|、|DF|成等比数列,求·的取值范围; (3)过点M作两条直线分别与圆N相交于A、B两点,且直线MA和直线MB的倾斜角互补,试判断直线MN和AB是否平行?请说明理由