(本小题满分14分)在平面直角坐标系中,设点,直线:,点在直线上移动,是线段与轴的交点, .(I)求动点的轨迹的方程;(II)设圆过,且圆心在曲线上, 设圆过,且圆心在曲线 上,是圆在轴上截得的弦,当运动时弦长是否为定值?请说明理由.
已知椭圆的左右焦点分别为,左顶点为,若,椭圆的离心率为(Ⅰ)求椭圆的标准方程,(Ⅱ)若是椭圆上的任意一点,求的取值范围(III)直线与椭圆相交于不同的两点(均不是长轴的顶点),垂足为H且,求证:直线恒过定点.
函数(Ⅰ)若,在处的切线相互垂直,求这两个切线方程.(Ⅱ)若单调递增,求的范围.
已知数列的前项和为,对任意的,点都在直线的图像上.(1)求的通项公式;(2)是否存在等差数列,使得对一切都成立?若存在,求出的通项公式;若不存在,说明理由.
已知多面体中,平面,∥,,, 、分别为、的中点.(Ⅰ)求证: 面;(Ⅱ)求三棱锥的体积.
设三组实验数据..的回归直线方程是:,使代数式的值最小时, ,,(、分别是这三组数据的横、纵坐标的平均数)若有七组数据列表如下:
(Ⅰ)求上表中前三组数据的回归直线方程;(Ⅱ)若,即称为(Ⅰ)中回归直线的拟和“好点”,求后四组数据中拟和“好点”的概率.