(本小题满分14分)已知函数,在上最小值为,最大值为,求的值.
设,求证:
对于函数与常数a,b,若恒成立,则称(a,b)为函数的一个“P数对”:设函数的定义域为,且f(1)=3. (1)若(a,b)是的一个“P数对”,且,,求常数a,b的值; (2)若(1,1)是的一个“P数对”,求; (3)若()是的一个“P数对”,且当时,,求k的值及茌区间上的最大值与最小值.
已知数列{}的前n项和为,且满足. (1)证明:数列为等比数列,并求数列{}的通项公式; (2)数列{}满足,其前n项和为,试求满足的最小正整数n.
设函数图像上的一个最高点为A,其相邻的一个最低点为B,且|AB|=. (1)求的值; (2)设△ABC的内角A、B、C的对边分别为a、b、c,且b+c=2,,求 的值域.
已知函数 (1)当a=2时,求曲线在点A(1,f(1))处的切线方程; (2)讨论函数f(x)的单调性与极值.