.本小题满分15分)如图,已知椭圆E:,焦点为、,双曲线G:的顶点是该椭圆的焦点,设是双曲线G上异于顶点的任一点,直线、与椭圆的交点分别为A、B和C、D,已知三角形的周长等于,椭圆四个顶点组成的菱形的面积为.(1)求椭圆E与双曲线G的方程;(2)设直线、的斜率分别为和,探求和的关系;(3)是否存在常数,使得恒成立?若存在,试求出的值;若不存在, 请说明理由.
.(本小题满分12分) 已知在中,a,b,c分别是角A,B,C所对的边,且满足 (I)求角A的大小; (II)若,求b,c的长。
(本小题满分12分) 已知数列满足 (I)求的取值范围; (II)是否存在,使得?证明你的结论。
(本小题满分12分) 如图,双曲线与抛物线相交于,直线AC、BD的交点为P(0,p)。 (I)试用m表示 (II)当m变化时,求p的取值范围。
(本小题满分12分) 已知函数 (I)当a=1时,求的最小值; (II)求证:在区间(0,1)单调递减。
(本小题满分12分) 如图,在正四棱柱ABCD—A1B1C1D1中,AB=1,AA1=2,E为棱AA1上一点,且平面BDE。(I)求直线BD1与平面BDE所成角的正弦值; (II)求二面角C—BE—D的余弦值。