(本小题满分12分)(理)已知甲,乙两名射击运动员各自独立地射击1次,命中10环的概率分别为,x(x>);且乙运动员在2次独立射击中恰有1次命中10环的概率为(I)求x的值(II)若甲,乙两名运动员各自独立地射击1次,设两人命中10环的次数之和为随机变量ξ,求ξ的分布列及数学期望
已知函数. (1)当时,解不等式; (2)若不等式恒成立,求实数的取值范围.
已知圆的极坐标方程为,直线的参数方程为 (为参数),点的极坐标为,设直线与圆交于点、. (1)写出圆的直角坐标方程; (2)求的值.
已知,为圆的直径,为垂直的一条弦,垂足为,弦交于. (1)求证:、、、四点共圆; (2)若,求线段的长.
已知、为椭圆的左右焦点,点为其上一点,且有. (1)求椭圆的标准方程; (2)过的直线与椭圆交于、两点,过与平行的直线与椭圆交于、两点,求四边形的面积的最大值.
已知函数,曲线经过点, 且在点处的切线为. (1)求、的值; (2)若存在实数,使得时,恒成立,求的取值范围.