【原创】(本小题满分6分) 能否在图中的四个圆圈内填入4个互不相同的数,使得任意两个圆圈中所填的数的平方和等于另外两个圆圈中所填数的平方和?如果能填,请填出一个例;如果不能填,请说明理由。
已知:如图,在□ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连接BE,DF. (1)求证:△DOE≌△BOF; (2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE. (1)求证:△BEC≌△DFA; (2)求证:四边形AECF是平行四边形.
如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿AD折叠,使点C落在斜边AB上的点E处,试求CD的长.
如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE. (1)求证:CE=CF. (2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)之间的函数关系如图(1)所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)之间的函数关系如图(2)所示. (1)观察图象,直接写出日销售量的最大值; (2)求小明家樱桃的日销售量y与上市时间x的函数解析式; (3)试比较第10天与第12天的销售金额哪天多.