设二次函数的图像过原点,,的导函数为,且,(1)求函数,的解析式;(2)求的极小值;(3)是否存在实常数和,使得和若存在,求出和的值;若不存在,说明理由。
如图,在四棱锥A-BCC1B1中,AB1=4,三角形ABC是正三角形,AB=2.四边形BCC1B1是矩形,二面角A-BC-C1为直二面角.(1)D在AC上运动,当D在何处时,有AB1∥平面BDC1?并且说明理由.(2)当AB1∥平面BDC1时,求二面角C-BC1-D的余弦值.
设是公比大于1的等比数列,为数列的前项和.已知,且构成等差数列.(1)求数列的通项公式;(2)令,求数列的前n项和.
已知函数.(1)求曲线在点(1,0)处的切线方程;(2)设函数,其中,求函数在上的最小值.(其中为自然对数的底数)
已知椭圆的对称中心为原点,焦点在轴上,左右焦点分别为和,且||=2,离心率.(1)求椭圆的方程;(2)过的直线与椭圆相交于A,B两点,若的面积为,求直线的方程.
如图,三棱柱中,侧棱垂直底面,,,是棱的中点。(1)证明:⊥平面(2)设,求几何体的体积。