如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.⑴求异面直线PD与AE所成角的大小;⑵求证:EF⊥平面PBC ;⑶求二面角F—PC—B的大小..
(本小题满分13分)已知实数有极大值32. (1)求函数的单调区间;(2)求实数的值.
(本小题满分13分)已知均为等差数列,且,求数列的前100项之和。
(本小题满分14分) 已知函数在处取得极值。 (Ⅰ)求函数的解析式; (Ⅱ)求证:对于区间上任意两个自变量的值,都有; (Ⅲ)若过点可作曲线的三条切线,求实数的取值范围。
(本小题满分13分)已知函数,其中为实数. (Ⅰ) 若在处取得的极值为,求的值; (Ⅱ)若在区间上为减函数,且,求的取值范围.
(本小题满分12分) 某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. (1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?