已知椭圆G的中心在坐标原点,与双曲线有相同的焦点,且过点.(Ⅰ) 求椭圆G的方程;(Ⅱ) 设、是椭圆G的左焦点和右焦点,过的直线与椭圆G相交于A、B两点,请问的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线的方程,若不存在,请说明理由.
.(本小题满分l 4分) 如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED. (Ⅰ)求证:BD⊥平面POA; (Ⅱ)当PB取得最小值时,请解答以下问题: (i)求四棱锥P-BDEF的体积; (ii)若点Q满足=λ(λ >0),试探究:直线OQ与平面PBD所成角的大小是否一定大于?并说明理由.
.(本小题满分13分) 如图,椭圆(a>b>0)的上、下顶点分别为A、B,已知点B在直线l:y=-1上,且椭圆的离心率e =.(Ⅰ)求椭圆的标准方程; (Ⅱ)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN
(本小题满分13分) 假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5,记此时教室里敞开的窗户个数为X . (Ⅰ)求X的分布列; (Ⅱ)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为y,求y的数学期望.
(本小题满分13分) 在数列{a n}中,a1=2,点(a n,a n+1)(n∈N*)在直线y=2x上. (Ⅰ)求数列{ a n }的通项公式; (Ⅱ)若bn=log2 an,求数列的前n项和Tn.
(本小题满分15分)设函数,(其中为实常数且),曲线在点处的切线方程为. (Ⅰ) 若函数无极值点且存在零点,求的值; (Ⅱ) 若函数有两个极值点,证明的极小值小于.