(本小题满分9分)如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求经过A、O、B三点的抛物线的解析式;(2)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(3)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
如图,在△ABC中,∠B=90°,AB=6㎝,BC=8㎝。点P从A开始沿AB边向点B以1㎝∕s的速度移动,点Q从点B开始沿BC边向点C以2㎝∕s的速度移动。若P、Q分别从A、B同时出发,(1)如图(1),经过多少时间,△PBQ与△ABC相似?(2)如图(2),当P到B后又继续在BC上前进,Q到C后又继续在CA上前进,经过多少时间,可以使得△CPQ的面积为12.6㎝2?
“五一”将至,某商场计划进A、B两种型号的衬衣共80件,商场用于买衬衣的资金不少于4288元,但不超过4300元。两种型号的衬衣进价和售价如下表:(1)该商场对这种型号的衬衣有哪几种进货方案。(2)该商场如何获得利润最大。(3)现据商场测算,每件B型衬衣的售价不会改变,每件A型衬衣的售价将会提高m元(m>0),且所有的衬衣可全部售出,该商场又将如何进货才能满足获得利润最大。(注:利润=售价-成本)
有一客轮往返于重庆和武汉之间,第一次做往返航行时,长江的水流速度为a千米/小时;第二次做往返航行时,正遇上长江发大水,水流速度为b千米/小时(b>a)。已知该船在两次航行中,静水速度都为V千米/小时,问该船两次往返航行所花时间是否相等,若你认为相等,请说明理由;若你认为不相等,请分别表示出两次航行所花的时间,并指出哪次时间更短些?
仔细阅读《战鸽总动员》中的对话,并回答问题。根据对话内容判断,小B超过最高时速了吗?为什么?
为了测量学校一棵参天古树的高度,我校数学兴趣小组做了如下探索:实践1:利用一根标竿和一根皮尺设计出如图1的测量方案,把长为2.5米的标竿竖直插入离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这时眼睛恰好通过标竿顶点F,看到树的顶点A。再用皮尺测得DE=2.7米。观察者目高CD=1.6米。他们利用相似原理求得树高为5.4米。实践2:提供选用的测量工具有①皮尺一根、②教学用三角板一副、③镜子一面、④测角仪一个。请你设计测量方案,并根据你所设计的测量方案回答下列问题。(1)在你设计的方案中,选用的测量工具是(用工具的序号填写) 。(2)在图2中画出你测量方案的示意图。(3)你需要测得示意图中哪些数据。并分别用a、b、c等表示测得数据 。(4)写出求树高(AB)的等式,AB= 。(用a、b、c等字母表示)