(本小题满分14分)已知二次函数,其中.(1)设函数的图象的顶点的横坐标构成数列,求证:数列为等差数列;(2)设函数的图象的顶点到轴的距离构成数列,求数列的前项和.
下面四个图案,都是由小正三角形构成,设第个图形中有个正三角形中所有小正三角形边上黑点的总数为.图1 图2 图3 图4(Ⅰ)求出,,,;(Ⅱ)找出与的关系,并求出的表达式;(Ⅲ)求证:().
设函数,若在点处的切线斜率为.(Ⅰ)用表示;(Ⅱ)设,若对定义域内的恒成立,求实数的取值范围;
设的内角所对的边长分别为,且满足(Ⅰ)求角的大小;(Ⅱ)若,边上的中线的长为,求的面积.
已知正项数列的前项和为,是与的等比中项.(Ⅰ)若,且,求数列的通项公式;(Ⅱ)在(Ⅰ)的条件下,若,求数列的前项和.
已知函数.(Ⅰ)当时,求函数的定义域;(2)若关于的不等式的解集是,求的取值范围.