(10分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3, 连接BD,过点E作EM∥BD,交BA的延长线于点M. (1)求⊙O的半径; (2)求证:EM是⊙O的切线; (3)若弦DF与直径AB相交于点P,当∠APD=45º时,求图中阴影部分的面积.
小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆(如图1),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判. 图1 ⑴你认为游戏公平吗?为什么? ⑵游戏结束,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”.请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式).
已知一次函数y=(m+3)x+m-4,y随x的增大而增大, (1)求m的取值范围; (2)如果这个一次函数又是正比例函数,求m的值; (3)如果这个一次函数的图象与y轴正半轴有交点,求m的值.
已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形。 (1)求满足条件的所有点B的坐标。(直接写出答案) (2)求过O、A、B三点且开口向下的抛物线的函数解析式。(只需求出满足条件的即可)。 (3)在(2)中求出的抛物线上存在点p,使得以O、A、B、P四点为顶点的四边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积。
已知,如图,在Rt△ABC中,∠ABC=90°∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F. (1)求证:GE=GF (2)若BD=1,求DF的长。
今年四月份,某蔬菜基地收获洋葱30吨,黄瓜13吨,现计划租用甲、乙 两种货车共10辆,将这两种蔬菜全部一次性运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨;一辆乙种货车可装洋葱和黄瓜各2吨。 (1) 基地安排甲、乙两种货车时有几种方案?请你帮助设计出来; (2) 若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,请把基地算一算应选择哪种方案,才能使运费最少?最少运费是多少?