(本小题满分12分)已知关于的不等式,其中.(1)当变化时,试求不等式的解集;(2)对于不等式的解集,若满足(其中为整数集). 试探究集合能否为有限集?若 能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由.
已知在直四棱柱ABCD-A1B1C1D1中,底面ABCD为直角梯形,且满足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8.E,F分别是线段A1A,BC上的点. (1)若A1E=5,BF=10,求证:BE∥平面A1FD. (2)若BD⊥A1F,求三棱锥A1-AB1F的体积.
15.(本小题满分14分) 已知函数f(x)=sin2x+sinxcosx-(xÎR). (1)若xÎ(0,),求f(x)的最大值; (2)在△ABC中,若A<B,f(A)=f(B)=,求的值.
(本小题满分12分) 甲、乙两人各射击一次,击中目标的概率分别是和.假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响. (1)求甲射击4次,至少有1次未击中目标的概率; (2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.
(本小题满分12分) 如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=60°. (1)证明:AB⊥A1C; (2)求二面角A-A1C-B的余弦值.
(本小题满分13分) 如图,平面α⊥平面β,A∈α,B∈β,AB与平面α、β所成的角分别为和,过A、B分别作两平面交线的垂线,垂足为A′、B′,若AB=12,求A′B′的长度.