已知数列是首项公比 的等比数列,设,数列满足. (1)求证:是等差数列; (2)求数列的前n项和Sn;(3)若对一切正整数恒成立,求实数的取值范围。
已知一个几何体的三视图(单位:cm)如图所示,求 (1)该几何体的体积 (2)该几何体的表面积
已知集合,,且,求
已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,-1)共线. (1)求椭圆的离心率; (2)设M为椭圆上任意一点,且(),证明为定值.
如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中点. (1)求证:平面ABM⊥平面PCD; (2)求直线CD与平面ACM所成角的正弦值; (3)以AC的中点O为球心、AC为直径的球交PC于点N求点N到平面ACM的距离.
在双曲线中,F1、F2分别为其左右焦点,点P在双曲线上运动,求△PF1F2的重心G的轨迹方程.