甲盒有标号分别为1、2、3的3个红球;乙盒有标号分别为1、2、…、的个黑球,从甲、乙两盒中各抽取一个小球,抽到标号为1号红球和号黑球的概率为.(Ⅰ)求的值;(Ⅱ)现从甲乙两盒各随机抽取1个小球,抽得红球的得分为其标号数;抽得黑球,若标号数为奇数,则得分为1,若标号数为偶数,则得分为0.求得分为2的概率.
如图示,边长为4的正方形与正三角形所在平面互相垂直,M、Q分别是PC,AD的中点。(1)求证: (2)求多面体的体积(3)试问:在线段AB上是否存在一点N,使面若存在,指出N的位置,若不存在,请说明理由。
在等差数列{}中,=3,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+ S2=12,.(1)求与的通项公式;(2)设数列{}满足,求{}的前n项和.
对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策” 的态度有差异?
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人赞成“楼市限购政策”的概率.(参考公式:,其中.)参考值表:
△ABC中,角A,B,C所对的边分别为且满足(Ⅰ)求角C的大小;(Ⅱ)求的最大值,并求取得最大值时的大小.
已知函数.(1)求的单调区间;(2)当时,若方程有两个不同的实根和,(ⅰ)求实数的取值范围;(ⅱ)求证:.