甲盒有标号分别为1、2、3的3个红球;乙盒有标号分别为1、2、…、的个黑球,从甲、乙两盒中各抽取一个小球,抽到标号为1号红球和号黑球的概率为.(Ⅰ)求的值;(Ⅱ)现从甲乙两盒各随机抽取1个小球,抽得红球的得分为其标号数;抽得黑球,若标号数为奇数,则得分为1,若标号数为偶数,则得分为0.求得分为2的概率.
本题满分14分) 设函数. (1)若,求函数的极值; (2)若,试确定的单调性; (3)记,且在上的最大值为M,证明:.
在数列中,已知. (1)求数列的通项公式; (2)求数列的前项和.
如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起, 使平面ABD平面BDC(如图乙),设点E、F分别为棱 AC、AD的中点. (1)求证:DC平面ABC; (2)求BF与平面ABC所成角的正弦; (3)求二面角B-EF-A的余弦.
已知椭圆:的长轴长是短轴长的倍,,是它的左,右焦点. (1)若,且,,求、的坐标; (2)在(1)的条件下,过动点作以为圆心、以1为半径的圆的切线(是切点),且使,求动点的轨迹方程.
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别 进行抽样检查,测得身高频数分布表如下表1、表2.表1:男生身高频数分布表表2:女生身高频数分布表 (1)求该校男生的人数并完成下面频率分布直方图; (2)估计该校学生身高(单位:cm)在的概率; (3)在男生样本中,从身高(单位:cm)在的男生中任选3人,设表示所选3人中身高(单位:cm)在的人数,求的分布列和数学期望.