已知椭圆C的中心在原点,焦点在轴上,长轴长是短轴长的倍且经过点M(Ⅰ)求椭圆C的方程(Ⅱ)过圆上的任一点作圆的一条切线交椭圆C与A、B两点①求证:②求|AB|的取值范围
已知函数. (1)当时,求函数在上的值域; (2)设,若存在,使得以为三边长的三角形不存在,求实数的取值范围.
己知集合,,,若“”是“”的充分不必要条件,求的取值范围.
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和个黑球(为正整数).现从甲、乙两个盒内各任取2个球,若取出的4个球均为黑球的概率为,求 (1)的值; (2)取出的4个球中黑球个数大于红球个数的概率.
已知为单调递增的等比数列,且,,是首项为2,公差为的等差数列,其前项和为. (1)求数列的通项公式; (2)当且仅当,,成立,求的取值范围.
在中,角所对的边分别为,且. (1)求的大小; (2)若是锐角三角形,且,求周长的取值范围.