一个盒子装有六张卡片,上面分别写着如下六个函数:,,,,,.(Ⅰ)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数。在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
已知向量,,设函数. (Ⅰ)求函数的解析式,并求在区间上的最小值; (Ⅱ)在中,分别是角的对边,为锐角,若,,的面积为,求.
某高中在校学生2000人,高一年级与高二年级人数相同并且都比高三年级多1人,为了响应市教育局“阳光体育”号召,该校开展了跑步和跳绳两项比赛,要求每人都参加而且只参加其中一项,各年级参与项目人数情况如下表:
其中,全校参与跳绳的人数占总人数的,为了了解学生对本次活动的满意度,采用分层抽样从中抽取一个200人的样本进行调查,则高二年级中参与跑步的同学应抽取人.
设. (Ⅰ)解不等式; (Ⅱ)若对任意实数,恒成立,求实数a的取值范围.
已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为. (Ⅰ)求的直角坐标方程; (Ⅱ)直线(为参数)与曲线C交于,两点,与轴交于,求的值.
如图,已知均在⊙O上,且为⊙O的直径。 (Ⅰ)求的值; (Ⅱ)若⊙O的半径为,与交于点,且、为弧的三等分点,求的长.