一个盒子装有六张卡片,上面分别写着如下六个函数:,,,,,.(Ⅰ)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数。在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
设函数 (1)求的单调区间、最大值; (2)讨论关于的方程的根的个数.
若的定义域为 ,值域为,则称函数是上的“四维方军”函数. (1)设是上的“四维方军”函数,求常数的值; (2)问是否存在常数使函数是区间上的“四维方军”函数?若存在,求出的值,否则,请说明理由.
已知函数, (1)当时,求曲线在点处的切线方程; (2)求函数的极值.
已知函数是奇函数. (1)求实数的值; (2)若函数在区间上单调递增,求实数的取值范围; (3)求函数的值域.
已知:全集,函数的定义域为集合,集合 (1)求; (2)若,求实数的范围.