一个盒子装有六张卡片,上面分别写着如下六个函数:,,,,,.(Ⅰ)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数。在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
(本小题满分12分)由于雾霾日趋严重,政府号召市民乘公交出行,但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取10人进行调查反馈,所选乘客情况如下表所示:(Ⅰ)估计这60名乘客中候车时间少于10分钟的人数;(Ⅱ)现从这10人中随机取3人,求至少有一人来自第二组的概率;(Ⅲ)现从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.
(本小题满分12分)在中,角A,B,C的对边分别为a,b,c,且.(1)求角A的大小;(2)若,求b,c的值.
设是公差不为0的等差数列,满足,则该数列的前10项和等于( )
(本小题满分12分)已知函数,其中为常数,且(1)当时,求的单调区间;(2)若在处取得极值,且在的最大值为1,求的值.
(本小题满分12分)已知椭圆的一个顶点为,焦点在轴上.若右焦点到直线的距离为3.(1)求椭圆的方程;(2)设椭圆与直线相交于不同的两点M、N.当时,求的取值范围.